UNIT-III: CALCULUS

CHAPTER

Term-I

CONTINUITY & DIFFERENTIABILITY

Syllabus

- Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions, derivative of implicit functions. Concept of exponential and logarithmic functions.
- Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

STAND ALONE MCQs

(1 Mark each)

- Q. 1. If f(x) = 2x and $g(x) = \frac{x^2}{2} + 1$ then which of the following can be a discontinuous function?
 - (A) f(x) + g(x) (B) f(x) g(x)

 - (C) f(x).g(x) (D) is sorrest

Ans. Option (D) is correct.

Explanation: Since f(x) = 2x and $g(x) = \frac{x^2}{2} + 1$ are continuous functions, then by using the algebra of continuous functions, the functions f(x) + g(x), f(x) - g(x), $f(x) \cdot g(x)$ are also continuous functions but $\frac{g(x)}{f(x)}$ is discontinuous function at x = 0.

- **Q. 2.** The function $f(x) = \frac{4 x^2}{4x x^3}$
 - (A) discontinuous at only one point
 - **(B)** discontinuous at exactly two points
 - (C) discontinuous at exactly three points
 - (D) none of these

Ans. Option (C) is correct.

Explanation: Given that,

$$f(x) = \frac{4-x^2}{4x-x^3},$$

then it is discontinuous if

$$\Rightarrow 4x - x^3 = 0$$

$$\Rightarrow x(4-x^2)=0$$

$$\Rightarrow x(2+x)(2-x)=0$$

$$\Rightarrow$$
 $x=0,-2,2$

Thus, the given function is discontinuous at exactly three points.

- **Q. 3.** The function $f(x) = \cot x$ is discontinuous on the set
 - (A) $\{x = n\pi; n \in Z\}$
 - **(B)** $\{x = 2n\pi; n \in Z\}$

(C)
$$\left\{ x = (2n+1)\frac{\pi}{2}; n \in Z \right\}$$

$$(\mathbf{D}) \left\{ x = \frac{n\pi}{2}; n \in Z \right\}$$

Ans. Option (A) is correct.

Explanation: Given that,
$$f(x) = \cot x = \frac{\cos x}{\sin x}$$

It is discontinuous at

$$\sin x = 0$$

$$\Rightarrow$$

$$\sin x = 0$$

$$x = n\pi, n \in \mathbb{Z}$$

Thus, the given function is discontinuous at $\{x=n\pi:n\in Z\}.$

Q. 4. If
$$f(x) = \begin{cases} mx + 1 & \text{if } x \le \frac{\pi}{2} \\ \sin x + n, & \text{if } x > \frac{\pi}{2} \end{cases}$$
, is continuous at $x = \frac{\pi}{2}$

then

(A)
$$m = 1, n = 0$$

(B)
$$m = \frac{n\pi}{2} + 1$$

(C)
$$n = \frac{m\pi}{2}$$

(A)
$$m = 1, n = 0$$
 (B) $m = \frac{n\pi}{2} + 1$ (C) $n = \frac{m\pi}{2}$ (D) $m = n = \frac{\pi}{2}$

Ans. Option (C) is correct.

Explanation: Given that,

$$f(x) = \begin{cases} mx + 1 & \text{if } x \le \frac{\pi}{2} \\ \sin x + n, & \text{if } x > \frac{\pi}{2} \end{cases}$$

is continuous function at $x = \frac{\pi}{2}$, then

$$LHL = RHL$$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{+}} f(x)$$

$$\Rightarrow \lim_{h \to 0} f\left(\frac{\pi}{2} - h\right) = \lim_{h \to 0} f\left(\frac{\pi}{2} + h\right)$$

$$\Rightarrow \lim_{h \to 0} m\left(\frac{\pi}{2} - h\right) + 1 = \lim_{h \to 0} \sin\left(\frac{\pi}{2} + h\right) + n$$

$$\Rightarrow \lim_{h \to 0} m\left(\frac{\pi}{2} - h\right) + 1 = \lim_{h \to 0} \cos h + n$$

$$\Rightarrow m\left(\frac{\pi}{2}\right) + 1 = 1 + n$$

$$\Rightarrow n = \frac{m\pi}{2}$$

Q. 5. If
$$y = Ae^{5x} + Be^{-5x}$$
, then $\frac{d^2y}{dx^2}$ is equal to

- (A) 25y
- (C) -25y

[CBSE Delhi Set-I 2020]

Ans. Option (A) is correct.

Explanation:

$$y = Ae^{5x} + Be^{-5x}$$

$$\Rightarrow \frac{dy}{dx} = 5Ae^{5x} - 5Be^{-5x}$$

$$\Rightarrow \frac{d^2y}{d^2x} = 25Ae^{5x} + 25Be^{-5x}$$
$$= 25y$$

Q. 6. If
$$y = \log_e \left(\frac{x^2}{e^2}\right)$$
, then $\frac{d^2y}{dx^2}$ equals

(A) $-\frac{1}{x}$

(B) $-\frac{1}{x^2}$

(C) $\frac{2}{x^2}$

[CBSE Delhi Set-III 2020]

Ans. Option (D) is correct.

Given,
$$y = \log_e \left(\frac{x^2}{e^2}\right)$$

 $\Rightarrow \qquad y = 2\log_e x - \log_e e^2$
 $\Rightarrow \qquad y = 2\log_e x - 2$
 $\Rightarrow \qquad \frac{dy}{dx} = \frac{2}{x}$
 $\Rightarrow \qquad \frac{d^2y}{dx^2} = \frac{-2}{x^2}$

- **Q. 7.** The set of points where the function f given by $f(x) = |2x - 1| \sin x$ is differentiable is
 - (**A**) R
- **(B)** $R \left\{ \frac{1}{2} \right\}$
- (C) $(0, \infty)$
- **(D)** none of these

Ans. Option (B) is correct.

Explanation: Given that,

$$f(x) = |2x - 1| \sin x$$

The function $\sin x$ is differentiable.

The function |2x-1| is differentiable, except

$$2x - 1 = 0$$

$$x=\frac{1}{2}$$

Thus, the given function is differentiable $R - \left\{ \frac{1}{2} \right\}$.

- **Q. 8.** The function $f(x) = e^{|x|}$ is
 - (A) continuous everywhere but not differentiable at x = 0
 - (B) continuous and differentiable everywhere
 - (C) not continuous at x = 0
 - (**D**) none of these

Ans. Option (A) is correct.

Explanation: Given that, $f(x) = e^{|x|}$

$$f(x) = e^{|x|}$$

continuous functions for all real value of x.

Since e^x is differentiable everywhere but |x| is non-differentiable at x = 0.

Thus, the given functions $f(x) = e^{|x|}$ is continuous everywhere but not differentiable at x = 0.

- **Q. 9.** Let $f(x) = |\sin x|$, then
 - **(A)** *f* is everywhere differentiable
 - is everywhere continuous but not differentiable at $x = n\pi$, $n \in \mathbb{Z}$.
 - **(C)** *f* is everywhere continuous but not differentiable at $x = (2n + 1)\frac{\pi}{2}, n \in \mathbb{Z}$.
 - (D) none of these

Ans. Option (B) is correct.

Explanation: Given that,

$$f(x) = |\sin x|$$

The functions |x| and $\sin x$ are continuous function for all real value of x.

Thus, the function $f(x) = |\sin x|$ is continuous function everywhere.

Now, |x| is non-differentiable function at x = 0. Since $f(x) = |\sin x|$ is non-differentiable function at $\sin x = 0$

Thus, f is everywhere continuous but not differentiable at $x = n\pi$, $n \in \mathbb{Z}$.

- **Q. 10.** If $y = \log\left(\frac{1-x^2}{1+x^2}\right)$, then $\frac{dy}{dx}$ is equal to

 - (A) $\frac{4x^3}{1-x^4}$ (B) $\frac{-4x}{1-x^4}$
 - (C) $\frac{1}{4-x^4}$ (D) $\frac{-4x^3}{1-x^4}$

Ans. Option (B) is correct.

Explanation: Given that,

$$y = \log\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow y = \log\left(1-x^2\right) - \log\left(1+x^2\right).$$

Differentiate with respect to x, we have

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log(1 - x^2) \Big] - \frac{d}{dx} \Big[\log(1 + x^2) \Big]$$

$$= \frac{-2x}{1 - x^2} - \frac{2x}{1 + x^2}$$

$$= -2x \Big(\frac{2}{(1 - x^2)(1 + x^2)} \Big)$$

$$= -\frac{4x}{1 - x^4}$$
(C) $\frac{3}{2}$
Thus, $\frac{du}{dv} = 2$

$$Q. 13. If $x = t^2$ and $y = t^3$ then $\frac{d^2y}{dx^2}$ is
$$(A) \frac{3}{2}$$

$$(C) \frac{3}{2t}$$$$

- **Q. 11.** If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx}$ is equal to

Ans. Option (A) is correct.

Explanation: Given that,

$$y = \sqrt{\sin x + y}$$
$$\Rightarrow y^2 = \sin x + y$$

Differentiate with respect to x, we have

$$\Rightarrow 2y \frac{dy}{dx} = \cos x + \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos x}{2}$$

Q. 12. The derivative of $\cos^{-1}(2x^2-1)$ w.r.t. $\cos^{-1}x$ is

- (A) 2
- (B) $\frac{-1}{2\sqrt{1-x^2}}$
- **(D)** $1-x^2$

Ans. Option (A) is correct.

Explanation: Let

$$u = \cos^{-1}(2x^{2} - 1)$$

$$\Rightarrow \frac{du}{dx} = -\frac{4x}{\sqrt{1 - (2x^{2} - 1)^{2}}}$$

$$\Rightarrow \frac{du}{dx} = -\frac{4x}{\sqrt{1 - 4x^{4} + 4x^{2} - 1}}$$

$$\Rightarrow \frac{du}{dx} = -\frac{4x}{\sqrt{-4x^{4} + 4x^{2}}}$$

$$\Rightarrow \frac{du}{dx} = -\frac{2}{\sqrt{1 - x^{2}}}$$

And,
$$v = \cos^{-1} x$$

$$\frac{dv}{dx} = -\frac{1}{\sqrt{1 - x^2}}$$
Thus, $\frac{du}{dv} = 2$

Ans. Option (A) is correct.

Explanation: Given that,

$$x = t^2$$
 and $y = t^3$
Then, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dt} = 3t^2$

Then,
$$\frac{dx}{dt} = 2t$$
 and $\frac{dy}{dt} = 3t$

Thus,
$$\frac{dy}{dx} = \frac{3t^2}{2t} = \frac{3t}{2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{3}{2}$$

ASSERTION AND REASON BASED MCQs

(1 Mark each)

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false and R is True
- **Q. 1. Assertion** (A): $|\sin x|$ is continuous for all $x \in R$. **Reason** (R): $\sin x$ and |x| are continuous in R.

Ans. Option (A) is correct.

Explanation: $\sin x$ and |x| are continuous in R. hence R is true.

Consider the functions $f(x) = \sin x$ and g(x) = |x|both of which are continuous in R.

$$gof(x) = g(f(x)) = g(\sin x) = |\sin x|.$$

Since f(x) and g(x) are continuous in R, gof(x) is also continuous in R.

Hence A is true.

R is the correct explanation of A.

Q. 2. Assertion (A):
$$f(x) = \tan^2 x$$
 is continuous at $x = \frac{\pi}{2}$.

Reason (R): $g(x) = x^2$ is continuous at $x = \frac{\pi}{2}$.

Ans. Option (D) is correct.

Explanation: $g(x) = x^2$ is a polynomial function. It is continuous for all $x \in R$.

Hence R is true.

$$f(x) = \tan^2 x$$
 is not defined when $x = \frac{\pi}{2}$.

Therefore $f\left(\frac{\pi}{2}\right)$ does not exist and hence f(x) is

Q. 3. Consider the function
$$f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \ge 0 \end{cases}$$

which is continuous at x = 0.

Assertion (A): The value of k is -3.

Reason (R):
$$|x| = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

Ans. Option (A) is correct.

Explanation:

$$|x| = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

This is the definition for modulus function and hence true.

Hence R is true.

Since *f* is continuous at x = 0,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$
Here
$$f(0) = 3,$$

$$LHL = \lim_{x \to 0^{-}} f(x)$$

$$= \lim_{x \to 0^{-}} \frac{kx}{|x|} = \lim_{x \to 0^{-}} \frac{kx}{-x} = -k$$

-k = 3 or k = -3.

Hence A is true.

R is the correct explanation of A.

Q. 4. Consider the function

$$f(x) = \begin{cases} x^2 + 3x - 10 \\ x - 2 \end{cases}, & \text{if } x \neq 2 \\ k, & \text{if } x = 2 \end{cases}$$

which is continuous at x = 2.

Assertion (A): The value of k is 0.

Reason (R): f(x) is continuous at x = a, if

$$\lim_{x \to a} f(x) = f(a).$$

Ans. Option (D) is correct.

Explanation:

f(x) is continuous at x = a, if $\lim_{x \to a} f(x) = f(a)$. ∴ R is true.

$$\lim_{x \to 2} f(x) = f(2) = k$$

$$\lim_{x \to 2} \frac{(x+5)(x-2)}{x-2} = k$$

$$k = 7$$

Q. 5. Assertion (A): $|\sin x|$ is continuous at x=0. **Reason (R):** $|\sin x|$ is differentiable at x = 0.

Ans. Option (C) is correct.

Explanation: Since $\sin x$ and |x| are continuous functions in R, $|\sin x|$ is continuous at x = 0. Hence Λ is true.

$$\begin{vmatrix} \sin x \end{vmatrix} = \begin{cases} -\sin x, & \text{if } x < 0 \\ \sin x, & \text{if } x \ge 0 \end{cases}$$

$$f(0) = |\sin 0| = 0$$

$$LHD = f'(0^{-}) = \lim_{x \to 0} \frac{-\sin x - 0}{x}$$

$$= -1$$

RHD =
$$f'(0^+) = \lim_{x \to 0} \frac{\sin x - 0}{x}$$

= 1

At x = 0, LHD \neq RHD.

So f(x) is not differentiable at x = 0.

Hence R is false.

Q. 6. Assertion (A): f(x) = [x] is not differentiable at x = 2. **Reason** (R): f(x) = [x] is not continuous at x = 2.

Ans. Option (A) is correct.

Explanation: f(x) = [x] is not continuous when xis an integer.

So f(x) is not continuous at x = 2. Hence R is true. A differentiable function is always continuous. Since f(x) = [x] is not continuous at x = 2, it is also not differentiable at x = 2.

Hence A is true.

R is the correct explanation of A.

Q. 7. Assertion (A): A continuous function is always differentiable.

Reason (R): A differentiable function is always continuous.

Ans. Option (D) is correct.

Explanation: The function f(x) is differentiable at x = a, if it is continuous at x = a and

LHD = RHD at
$$x = a$$
.

A differentiable function is always continuous. Hence R is true.

A continuous function need not be always differentiable.

For example, |x| is continuous at x = 0, but not differentiable at x = 0.

Hence A is false.

Q. 8. Assertion (A): If $y = \sin^{-1} (6x\sqrt{1-9x^2})$, then

$$\frac{dy}{dx} = \frac{6}{\sqrt{1 - 9x^2}}$$

Reason (R): $\sin^{-1}(6x\sqrt{1-9x^2}) = 3\sin^{-1}(2x)$

Ans. Option (C) is correct.

Explanation:

put
$$3x = \sin \theta \text{ or } \theta = \sin^{-1} 3x$$

 $y = \sin^{-1} (6x\sqrt{1 - 9x^2}) = \sin^{-1} (\sin 2\theta)$

$$= 2\theta$$
$$= 2\sin^{-1} 2$$

$$=2\sin^{-1}3x$$

$$\therefore \qquad \frac{dy}{dx} = \frac{6}{\sqrt{1 - 9x^2}}$$

A is true. R is false.

CASE-BASED MCQs

Attempt any four sub-parts from each question. Each sub-part carries 1 mark.

I. Read the following text and answer the following questions on the basis of the same:

Ms. Remka of city school is teaching chain rule to her students with the help of a flow-chart

The chain rule says that if h and g are functions and f(x) = g(h(x)), then

$$f'(x) = (g(h(x)))' = g'(h(x)) h'(x)$$

- keep the inside

by derivative

 take derivative of outside

of the inside

Let $f(x) = \sin x$ and $g(x) = x^3$

Q. 1. fog(x) =_____.

(A) $\sin x^3$

(B) $\sin^3 x$

(C) $\sin 3x$

(D) $3\sin x$

Ans. Option (A) is correct.

Explanation:

$$fog(x) = f(g(x))$$
$$= f(x^3)$$
$$= \sin(x^3)$$

Q. 2. gof(x) =_____

(A) $\sin x^3$

(B) $\sin^3 x$

(C) $\sin 3x$

(D) $3 \sin x$

Ans. Option (B) is correct.

Explanation:

$$gof(x) = g(f(x))$$

= $g(\sin x)$
= $\sin^3 x$

Q. 3. $\frac{d}{dx}(\sin^3 x) = ----$

(A) $\cos^3 x$

(B) $3\sin x \cos x$

(C) $3\sin^2 x \cos x$ (D) $-\cos^3 x$

Ans. Option (C) is correct.

Explanation:

$$\frac{d}{dx}(\sin^3 x) = 3\sin^2 x \frac{d}{dx}(\sin x)$$

$$= 3\sin^2 x \cos x$$

(C) $3x^2 \sin(x^3)$ (D) $3x^2 \cos(x^3)$

Ans. Option (D) is correct.

$$\frac{d}{dx}(\sin x^3) = \cos x^3 \frac{d}{dx}(x^3)$$
$$= 3x^2 \cos x^3$$

Q. 5. $\frac{d}{dx}(\sin 2x)$ at $x = \frac{\pi}{2}$ is _____.

(A) 0

(C) 2

Ans. Option (D) is correct.

Explanation:

$$\frac{d}{dx}(\sin 2x) = \cos 2x \frac{d}{dx}(2x)$$

$$= 2\cos 2x$$

$$\frac{d}{dx}(\sin 2x)\Big|_{x=\frac{\pi}{4}} = 2\cos 2 \times \frac{\pi}{2} = 2\cos \pi$$

$$= 2(-1)$$

$$= -2$$

II. Read the following text and answer the following questions on the basis of the same:

A potter made a mud vessel, where the shape of the pot is based on f(x) = |x-3| + |x-2|, where f(x)represents the height of the pot.

[CBSE QB 2021]

Q. 1. When x > 4 what will be the height in terms of x?

(A) x-2 (B) x-3

(C) 2x-5 (D) 5-2x

Ans. Option (C) is correct.

Explanation: The given function can be written

$$f(x) = \begin{cases} 5 - 2x, & \text{if } x < 2\\ 1, & \text{if } 2 \le x < 3\\ 2x - 5, & \text{if } x \ge 3 \end{cases}$$
When $x > 4$, $f(x) = 2x - 5$

Q. 2. Will the slope vary with *x* value?

(A) Yes

(B) No

(C) Can't say

(D) In complete data

Ans. Option (A) is correct.

Explanation:

$$f'(x) = \begin{cases} -2, & \text{if } x < 2 \\ 0, & \text{if } 2 \le x < 3 \\ 2, & \text{if } x \ge 3 \end{cases}$$

Q. 3. What is $\frac{dy}{dx}$ at x = 3

(A) 2

(B) -2

(C) Function is not differentiable

(D) 1

Ans. Option (C) is correct.

Explanation: f(x) is not differentiable at x = 2 and

Q. 4. When the value of x lies between (2, 3) then the function is

(A) 2x - 5

(B) 5-2x

(C) 1

(D) 5

Ans. Option (C) is correct.

Explanation: In (2, 3), f(x) = 1

Q. 5. If the potter is trying to make a pot using the function f(x) = [x], will he get a pot or not? Why?

(A) Yes, because it is a continuous function

(B) Yes, because it is not continuous

(C) No, because it is a continuous function

(D) No, because it is not continuous

Ans. Option (D) is correct.

Explanation: [x] is not continuous at integral values of x.